ORGANIC PHOTOCHEMISTRY. VIII. THE PHOTOSENSITIZED AND THERMAL CYCLOADDITION REACTIONS OF BUTADIENE AND ACRYLONITRILE 1

Wendell L. Dilling and Roger D. Kroening

Edgar C. Britton Research Laboratory
The Dow Chemical Company, Midland, Michigan 48640

(Received in USA 6 December 1969; received in UK for publication 22 January 1970)

The thermal 4+2 cycloaddition of butadiene 1 to acrylonitrile 2 to give the cyanocyclohexene 5 is one of the classic examples of the Diels-Alder reaction. In view of the increasing number of competitive 4+2 and 2+2 thermal cycloaddition reactions which have been reported, we have reexamined the reaction of 1 and 2 and find that at 150° in the dark 0.5% of the isomeric cyclobutanes 3 and 4 is indeed formed.

In order to obtain larger quantities of the cyclobutanes 3 and 4 we have carried out the photosensitized addition of the diene 1 to the nitrile 2 using acetophenone as the sensitizer. In addition to the cyclobutyl cross-adducts 3 and 4, 4 the diene dimers 6-8, 5 nitrile dimers 9 and 10, 6 and a small amount of the cyclobexene 5 were formed.

The stereochemical assignments of the cyclobutane derivatives 3 and $\frac{1}{4}$ were made on the basis of the nmr chemical shifts of the vinylic and allylic protons (Table I). Examination of molecular models indicated that the vinylic protons, H^A , H^B , and H^C , of the <u>cis</u> isomer $\frac{1}{4}$ should be more deshielded by the cyano group than are the corresponding protons of the <u>trans</u> isomer 3. The allylic proton, H^D , should be more shielded in the <u>trans</u> isomer 3 than in the cis isomer $\frac{1}{4}$.

The product distributions for the photosensitized and thermal cycloadditions are shown in Table II. No reaction occurred at 5° in the absence of light. The small amount of cyclobutyl products 3 and 4 formed in the thermal reaction could arise via either branching of a two-step reaction, 11 giving both 5 and 3, 4 via a common diradical or dipolar intermediate, or via an independent two-step process while the cyclohexene 5 is formed in a concerted manner. 12 The finding of a small amount of the 1,2-addition products in this reaction points out that this phenomenon may be much more general than once thought.

The large amount of cyclobutanes $\underline{3}$ and $\underline{4}$, and $\underline{6}$ in the photosensitized reaction is a consequence of the high $\underline{s\text{-}\text{trans}}$ diene $\underline{1}$ concentration in equilibrium with the $\underline{s\text{-}\text{cis}}$ form 5,13

Table I. Proton Chemical Shifts in $\underline{\text{trans}}$ -(3) and $\underline{\text{cis}}$ -1-Cyano-2-vinylcyclobutane ($\underline{t_i}$)

HD HC	Chemical shift, ppm						
$^{\mathrm{H}^{\mathrm{A}}}$ $^{\mathrm{H}^{\mathrm{B}}}$	trans-	cis-					
Proton	3	14					
н ^А	- 5.92	-6.09					
$^{\mathrm{H}^{\mathrm{B}}}$	-5.06	- 5 . 19					
$^{\mathrm{H}^{\mathrm{C}}}$	-5.08	-5.14					
\mathtt{H}^{D}	-2.87	-3.3					

Table II.	Product	Distribut	ions	from	Acet	go.	henor	ne Pl	hotosensiti	zed	and
Therm	al Cyclo	additions	of E	Butadie	ene (1)	and	Acr	ylonitrile	(2)	

		Initia	1	Distribution of products, % ²						
Reaction no.	Reaction molar action type, temp ratio			action me (hr)	Conver % base	Cross- adducts 3-2		Diene dimers 6-8b	Nitrile dimers 2-10	
.1	hv, ^c 5°	0.90	10		13	13		3	56	1.6
2	hν, 5°	0.86	54		68		49		29	23
3	hν, 0°	0.33		12		11		3	7	50
1+	Δ, ^d 150°	0.98		3		74		6	4	0
				I	somer dis	stributi	on of	, %ª-		
Reaction no.	Reaction type		Cross-adduct		2 6		ne dimers-		Nitril 2	e dimers
1	hν		50	50	0.8	87	11	2	53	47
2	hν		48	5L	1.5	84	13	3	50	50
3	hν		49	.50	0.8	92	7	2	46	54
·2 ₄	Δ		0.27	0.21	99.5	5	_Ļ е	91		_

Betermined by gas chromatography assuming equal thermal conductivities on a weight basis for all products. Bethe cis-divinylcyclobutane 7 was partially isomerized to 1,5-cyclocotadiene under the analytical conditions; the amount of 7 was taken to be the sum of 7 and the octadiene. Call photoreactions run with ca. 20% (mole, based on diene 1) of acetophenone as the sensitizer using a 450 watt medium pressure mercury arc lamp with a Pyrex filter (λ > 295 m), no solvent. done percent of 2,4-dinitro-c-cresol added as a polymerization inhibitor, no solvent.

and the relative vertical triplet energies of the species involved: acetophenone, 73.6 kcal./mole; 14 s-trans-1, 59.6 kcal./mole; 15 s-cis-1, ca. 53 kcal./mole. Although the triplet energy of the nitrile 2 (ca. 61 kcal./mole b) is lower than that of acetophenone, the dimerization of the nitrile 2 is rather inefficient (see reaction no. 1, Table II) compared with diene dimerization and cross-addition. Therefore the cross-addition probably occurs mainly by addition of diene 1 triplets to ground state nitrile 2 and not vice versa.

REFERENCES

- (a) Part VII: W. L. Dilling, R. D. Kroening, and J. C. Little, J. Am. Chem. Soc., 92, (1970); (b) Part VI: W. L. Dilling, Chem. Rev., 69, 845 (1969); (c) Part V: W. L. Dilling and R. D. Kroening, Tetrahedron Letters, 5601 (1968); (d) Part IV: W. L. Dilling and R. D. Kroening, ibid., 5101 (1968).
- (a) C. Koningsberger and G. Salomon, <u>J. Polymer Sci.</u>, <u>1</u>, 353 (1946); (b) A. A. Petrov and N. P. Sopov, <u>Zhur. Obschi Khim.</u>, <u>17</u>, <u>2228 (1947)</u>; <u>Chem. Abstr.</u>, <u>42</u>, <u>4957 (1948)</u>; (c) H. J. Pistor and H. Plieninger, <u>Ann.</u>, <u>562</u>, 239 (1949); (d) G. J. Janz and N. E. Duncan, <u>J. Am. Chem. Soc.</u>, <u>75</u>, 5389 (1953).
- 3. (a) J. Sauer, Angew. Chem. Intern. Ed. Engl., 6, 16 (1967); (b) S. Seltzer, Adv. Alicyclic Chem., 2, 1 (1968); (c) W. C. Herndon and J. Feuer, J. Org. Chem., 33, 417 (1968); (d) P. D. Bartlett, Science, 159, 833 (1968); (e) P. D. Bartlett, A. S. Wingrove, and R. Owyang, J. Am. Chem. Soc., 90, 6067 (1968) and references cited therein.
- 4. Satisfactory infrared, nmr, and high resolution mass spectra were obtained for all new compounds.
- R. S. H. Liu, N. J. Turro, Jr., and G. S. Hammond, <u>J. Am. Chem. Soc.</u>, <u>87</u>, 3406 (1965).
- (a) J. Runge and R. Kache, British Patent 1,068,230 (1967); Chem. Abstr., 67, 73215 (1967); (b) S. Hosaka and S. Wakamatsu, <u>Tetrahedron Letters</u>, 219 (1968); (c) R. S. H. Liu and D. M. Gale, J. Am. Chem. Soc., 90, 1987 (1968).
- 7. Some polymer was also formed.
- 8. (a) L. M. Jackman, <u>Fortschr. Chem. Org. Naturstoffe</u>, 23, 335 (1965); (b) J. R. Dyer, "Applications of Absorption Spectroscopy of Organic Compounds," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965, p. 78.
- 9. The vicinal protons $\underline{\text{cis}}$ to the nitrile group in the $\underline{\text{endo-}}$ and $\underline{\text{exo-}}$ 2-cyanonorbornenes are shielded with respect to the vicinal $\underline{\text{trans}}$ protons. Ia, 10
- 10. J. C. Davis, Jr., and T. V. Van Auken, J. Am. Chem. Soc., 87, 3900 (1965).
- 11. J. C. Little, ibid., 87, 4020 (1965).
- 12. (a) R. Hoffmann and R. B. Woodward, <u>ibid.</u>, <u>87</u>, 2046 (1965); (b) R. Hoffmann and R. B. Woodward, <u>Accounts Chem. Res.</u>, <u>1</u>, 17 (1968).
- J. G. Aston, G. Szasz, H. W. Woolley, and F. G. Brickwedde, <u>J. Chem. Phys.</u>, <u>14</u>, 67 (1946).
- 14. W. G. Herkstroeter, A. A. Lamola, and G. S. Hammond, J. An. Chem. Soc., 86, 4537 (1964).
- 15. (a) R. E. Kellogg and W. T. Simpson, <u>ibid.</u>, <u>87</u>, 4230 (1965); (b) D. F. Evans, <u>J</u>. Chem. Soc., 1735 (1960).